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Orbital-free extension to Kohn-Sham density functional theory equation of state

calculations: application to silicon dioxide
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The liquid regime equation of state of silicon dioxide SiO2 is calculated via quantum molecular
dynamics in the density range 5 to 15 g/cc and with temperatures from 0.5 to 100 eV, including the
α-quartz and stishovite phase Hugoniot curves. Below 8 eV calculations are based on Kohn-Sham
density functional theory (DFT), above 8 eV a new orbital-free DFT formulation, presented here,
based on matching Kohn-Sham DFT calculations is employed. Recent experimental shock data
is found to be in very good agreement with the current results. Finally both experimental and
simulation data are used in constructing a new liquid regime equation of state table for SiO2.

Access to the accurate equation of state (EOS) of ma-
terials over wide ranges in density and temperature, and
in particular for matter in extreme conditions of signifi-
cantly elevated temperature and density with respect to
ambient conditions, is important in various arenas. Some
systems of interest include dense astrophysical plasmas
as exist in the interiors of giant planets, as well as warm
dense matter, which is increasingly studied in high en-
ergy density laboratory experiments, and also in devel-
opment of inertial confinement fusion [1]. A particular
case, presented here is that of quartz (SiO2), a ubiqui-
tous mineral in Earth’s composition, it is also constituent
in exoplanet modeling at higher temperatures and pres-
sures than at inner Earth conditions [2]. This material is
also important as a window material in high compression
shock experiments, typically in the quartz liquid regime
above 100 GPa and 5000 K [3, 4]. Hence, an accurate
EOS for quartz is critical for determining properties of
other materials through shock experiments.
In general these extreme conditions represent a signifi-

cant and current challenge of high energy density physics.
Experimental results remain sparse, and from a theo-
retical standpoint the ions exhibit moderate to strong
coupling while the electrons require quantum treatment
[5]. This then necessitates numeric simulations for which
quantum molecular dynamics (QMD) based on Kohn-
Sham density functional theory (DFT) has emerged as
the state of the art. Kohn-Sham DFT, however, becomes
computationally prohibitive with increasing temperature
as the number of required orbitals increases with tem-
perature and in general the method scales as the cube
of the number of orbitals. Though material and den-
sity dependent, Kohn-Sham calculations are, thus, gen-
erally viable below 10 eV or so. In this work we develop
an orbital-free DFT formulation to combine with Kohn-
Sham results and extend QMD simulations to very high
temperatures.
In QMD, the ions are treated classically and moved

according to Newton’s equations, where the force on each
ion is found from the Coulomb repulsion between all ions,
and from the neutralizing electron charge density. The
electron density, n, is found at each ionic configuration by

DFT. This is done by minimizing the free energy, which
is given by the density functional [6]

F [n] = Fs[n] + FH [n] + Fxc[n] + Fei[n] (1)

where Fs is the non-interacting free energy comprised of
both kinetic and entropic parts, FH is the Hartree energy
or direct Coulomb interaction between the electrons, Fei

is the electron-ion Coulomb interaction, and Fxc is de-
fined as the remainder of the total free energy, which in-
cludes the quantum mechanical exchange and correlation
as well as the excess kinetic and entropic terms. Of the
contributions neither Fs nor Fxc have exact formulations
in terms of the density alone. Given the same orbital-
free Fxc approximation, the only difference in approach
of orbital-free DFT from Kohn-Sham DFT is that the
non-interacting free energy, Fs, is found from an approxi-
mate density functional instead of being exactly obtained
through the calculation of single particle orbitals.

In recent years the orbital-free approach at finite tem-
perature has gained attention, with most results being
for hot dense systems where the Thomas-Fermi approx-
imation is employed for Fs [7]. Various works have of-
fered density gradient corrections to Thomas-Fermi that
improves results moderately [8–11]. None of these func-
tionals, though, have reached the accuracy of Kohn-Sham
across temperature regimes. A recent nonlocal functional
has been shown to be highly accurate across temperature
and density regimes [12], but is requisite on Kohn-Sham
derived pseudopotentials, which may not be as transfer-
able. Subsequently an accurate and general orbital-free
funcitonal remains elusive.

Previous works [13, 14] have attempted to connect
high temperature Thomas-Fermi calculations with low
temperature Kohn-Sham results, for low atomic num-
ber systems. In this work we develop and implement
a method to obtain a simple and accurate Fs beyond
Thomas-Fermi, applicable to a wide range of materials
and densities, for warm to hot systems, which smoothly
extends Kohn-Sham results beyond the lower tempera-
ture region that is currently computationally accessible.
Then in an application to SiO2 a new liquid phase EOS
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is developed utilizing the current QMD calculations and
compared with experimental results.
We first introduce an orbital-free Fs of the following

form

Fs[n] = FTF [n] + λFvW [n] (2)

with

FTF [n] =

∫
FHEG(n(r), T )/V dr , (3)

FvW [n] =

∫
|∇n(r)|2

8n(r)
dr . (4)

Here FTF is the Thomas-Fermi approximation which
takes for the noninteracting free energy that of the ho-
mogeneous electron gas, FHEG, with density equal to
that of the local density and at the system temperature
T ; FvW is the von-Weizsacker gradient correction which
has no explicit temperature dependence. The von Weiz-
sacker coefficient λ, is material and density dependent,
and is to be determined through matching conditions
between orbital-free and Kohn-Sham calculations at a
specific density. In a more general way one could write
λ(n0), with n0 being the average electron density, here
though, λ is treated as a constant and in that way Eq.
(2) represents a best approximation at a given density
to the more general FS , which is a single functional over
varying densities.
The procedure to determine λ is straight forward. First

we evaluate the pressure along an isochore using Kohn-
Sham MD, until the temperature is high enough that
the calculations becomes intractable (which of course de-
pends on computational resources) but should be at least
5 to 10 eV. Below which the orbital-free approach will be-
come inaccurate due to issues such as molecular bonding.
Then at a given match temperature a few orbital-free cal-
culations are performed with initial guesses for λ and the
λ is determined which reproduces the Kohn-Sham data
in pressure, λ is then fixed for that density. Figure 1
shows results of the matching method over a range of
densities, a strong argument is made for the approach in
that even though the match for pressure is made at the
single point T = 6 eV, the change with temperature, or
slope in Fig. 1, is in near exact agreement between the
two DFT methods. Also at very high temperature ∼100
eV, our results come into agreement with the Thomas-
Fermi based MD, which is correct in the high-T limit.

The details of the calculations are as follows. The
Kohn-Sham SiO2 calculations were performed in the liq-
uid regime above 5.5 g/cc and 0.5 eV using the Quantum-
Espresso program [15]. We included 72 total atoms in
the calculations and all were performed with the Γ-point
only. Some calculations were performed with a 2x2x2 k-
point grid, without noticeable differences to the Gamma-
point calculations. PAW pseudopotentials [16] were em-
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FIG. 1: Pressure results of Kohn-Sham (KS) MD and orbital-
free (OF) MD near the match temperature of 6 eV, for iso-
chores of 11, 10, 9, 8, 6.9, 6.43, and 5.57 g/cc, λ ranges from
0.18-0.22.

ployed, along with a temperature dependent implementa-
tion of the AM05 exchange-correlation functional [17, 18],
and a plane wave energy cutoff of 50 Ry was used. The
molecular dynamics were performed at constant temper-
ature using the Anderson thermostat. In order to calcu-
late the Hugoniot, described below, the initial crystalline
states of α-quartz and stishovite were calculated at the
experimentally prescribed densities of 2.65 and 4.29 g/cc
at room temperature, using the primitive cell of each
phase with fully converged k-point grids.
In the orbital-free case, the same number of atoms were

included as for the Kohn-Sham case, and the electron
density was optimized on a regular 643 numeric grid. Lo-
cal pseudopotentials were generated for each density and
temperature, according to the prescription given in Ref.
7, with a cutoff radius of 0.6 time the Wigner-Seitz ra-
dius. Since the orbital-free calculations were performed
only above 5 eV, only the temperature dependent local
density approximation (LDA) exchange-correlation [19]
was used for simplicity. The orbital-free molecular dy-
namics were completed in the isokinetic ensemble [20].
The key application of the above QMD calculations

is in construction and validation of a far reaching EOS
valid at arbitrary densities and temperatures. While ex-
perimental data serves as the traditional constraining in-
put for EOS construction, it is particularly lacking in the
warm dense matter regime. Further this regime falls in
the region of interpolation between the low and high tem-
perature models upon which the EOS is built, precisely
where constraining input is most needed. The current
QMD calculations then provide that input.
The overall EOS model itself is a summation of three

independent terms for the total Helmholtz free energy,
given in terms of the material density ρ and the temper-
ature T ,

Ftot = F0(ρ) + Fi(ρ, T ) + Fe(ρ, T ) . (5)
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The contributions here are the cold curve, F0, the ion
thermal contribution Fi, and the electron thermal con-
tribution Fe. First of all the cold curve, representing
zero temperature electrons and ions, is constructed from
a modified Lennard-Jones model in the expanded region
and Thomas-Fermi-Dirac theory at very high pressures,
with a Birch-Murnaghan model in the interim. Next
the ion thermal portion, due to the thermal motion of
the ions, is built from a Debye model for temperatures
less than the melt temperature, and interpolating to an
ideal gas at high temperatures, leaving a poorly described
liquid-like warm dense matter state. Finally the electron
thermal portion, which comprises the thermal excitation
of electrons above the ground state, is evaluated via the
Thomas-Fermi average atom model.
In order to effect an accurate EOS, the various param-

eters of the constituent models need to be constrained by
input data from experiment or further theoretical calcu-
lations.
In the case of SiO2 there is shock data providing the

pressure-density curve of the Hugoniot for α-quartz [3]
and more recently for stishovite [2], as well as some recent
shock release data for α-quartz [4] which provides some
off-Hugoniot data. This data alone is inadequate for a
full ranging EOS, but when combined with wide ranging
QMD data a more complete view is established, and an
accurate EOS may be determined.
The Hugoniot itself is calculated via the Rankine-

Hugoniot jump conditions [21], which relates the equi-
librium pre-shock and post-shock states by consideration
of conservation laws,

E − E0 = (P + P0)(V0 − V )/2 . (6)

Here E, P and V are the internal energy, pressure and
volume respectively, and the 0 subscript denotes the ini-
tial state. For α-quartz and stishovite the initial condi-
tions are densities of 2.65 g/cc and 4.29 g/cc respectively,
and at ambient pressure and temperature. The initial
internal energy is calculated via Kohn-Sham DFT and
then using Kohn-Sham MD, an isochore or isotherm is
followed until conditions are such that Eq. (6) is satis-
fied. However when extending to orbital-free MD there is
a shift in the internal energy due to change in the pseu-
dopotential and the functional. As part of the matching
scheme this shift is found at the match point temperature
and density, so that the initial state energy calculated by
Kohn-Sham DFT can be used. Additionally since there
is a different pseudopotential used at each temperature
and density with the orbital-free DFT, a second shift in
energy must be accounted for, which is found by perform-
ing two orbital-free calculations at the same temperature
and density but with different pseudopotentials.
The resulting Hugoniots for α-quartz and stishovite

are shown in Fig. 2. The very good agreement between
experiment and QMD, provides validity to the QMD re-
sults for extension to regions where there is no experi-
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FIG. 2: Comparison of experimental results, Refs. 2–4, with
current QMD and EOS shock Hugoniot results. Upper panel
shows α-quartz, middle panel shows stishovite, and the lower
panel shows α-quartz on the left curve and stishovite to the
right.

mental data, such as the high pressure Hugoniot exten-
sions shown in the lower panel of Fig. 2. A benefit of
the QMD calculation is that the temperature is also cal-
culated along the Hugoniot. This is not always available
from the shock data, as it is not here with the α-quartz
data. Along the α-quartz Hugoniot we find the temper-
ature increases from 0.86 eV at 5.57 g/cc to 6.73 eV at
7.62 g/cc to 23.34 eV at 10.00 g/cc.

Away from the Hugoniot the broad range of QMD re-
sults can be compared directly with the EOS. A subset of
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FIG. 3: Comparison of pressures between the QMD results
and the current EOS for liquid SiO2 isotherms. From top to
bottom temperatures are 100, 50, 20, 10 ,5 eV in the upper
panel and 6.89, 5.17, 3.45, 1.72, 0.86 eV in the lower panel.
The α-quartz (dashed) and stishovite (dotted) Hugoniots cal-
culated from the EOS are shown for reference.

QMD calculations is plotted in Fig. 3 showing the range
of temperatures for 0.86-100 eV and densities from 5-15
g/cc. The higher temperature orbital-free results were
instrumental in constraining the ion thermal portion of
the EOS through the higher temperature liquid phase
approaching the Thomas-Fermi-Dirac limit.

Finally we show the agreement of the resulting EOS
with the shock release data in Fig. 4. Here the adiabats
are calculated within the EOS which pass through the
experimental release points along the Hugoniot. Good
agreement is shown with experiment for the release in
each of the three materials, which also with the isotherm
data of Fig. 3 demonstrate high accuracy for the EOS
away from the Hugoniot.

In summary we have developed a robust and pre-
scriptive method for accurately extending Kohn-Sham
DFT based molecular dynamics simulations by orbital-
free DFT simulations, for equation of state calculations
including calculation of the Hugoniot to very high tem-
peratures. This is important as the Kohn-Sham MD
calculations have been shown to accurately characterize
both solid and liquid systems and have become a gold
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FIG. 4: Good agreement is seen between the experimental Z-
machine shock release data, Ref. 4, and the EOS calculated
adiabats.

standard. Yet due to temperature scaling issues, going
beyond 10 eV or so is formidable and despite advances in
computing resources seems poised to remain so. The cur-
rent orbital-free extension alleviates this bottle neck, al-
lowing for accurate results in conjunction with the Kohn-
Sham method, from zero temperature through the high
temperature Thomas-Fermi limit.

As a relevant application we constructed a wide rang-
ing EOS for SiO2. The EOS constrained by the QMD
calculations shows very good agreement with the recent
shock experiment data. An immediate and critical appli-
cation of the new EOS lies in design and analysis of high-
pressure shock experiments of different materials where
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α-quartz has been used extensively as a window mate-
rial, and hence determination of these materials relies on
a highly accurate SiO2 EOS.
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